# Weighted Markov-Type Estimates for the Derivatives of Constrained Polynomials on [ $0, \infty$ ) 

T. Erdélyi*<br>Mathematical Institute of the Hungarian Academy of Sciences. 13-15 Reáltanoda utca, Budapest H-1053, Hungary

Communicated by $V$. Totik
Received September 11, 1987

Throughout this paper $c_{1}(\cdot), c_{2}(\cdot), \ldots$ will denote positive constants depending only on the values given in the parenthesis. Let $\Pi_{n}$ be the set of all real algebraic polynomials of degree at most $n$. A weaker version of an inequality of the brothers Markov (see [8, 9]) asserts that

$$
\begin{align*}
& \max _{A \leqq x \leqq B}\left|p^{(m)}(x)\right| \\
& \quad \leqq\left(\frac{2 n^{2}}{B-A}\right)^{m} \max _{A \leqq x \leqq B}|p(x)| \quad\left(p \in \Pi_{n} ; n, m \geqq 1\right) . \tag{1}
\end{align*}
$$

For $0<r \leqq(B-A) / 2(A, B \in \mathbb{R})$ let

$$
D_{1}(A, B, r)^{+}:=\{z \in \mathbb{C}| | z-(A+r) \mid<r\}
$$

and denote by $S_{n}^{k}(A, B, r)^{+}(0 \leqq k \leqq n)$ the set of those polynomials from $\Pi_{n}$ which have at most $k$ roots in $D_{1}(A, B, r)^{+}$. From (40) of [2], by a simple linear transformation we obtain

Theorem A. Let $0<r \leqq(B-A) / 2, A, B \in \mathbb{R}, 0 \leqq k \leqq n, n, m \geqq 1$, and $s \in S_{n}^{\star}(A, B, r)^{+}$. Then

$$
\left|s^{(m)}(A)\right| \leqq c_{1}(m)\left(\frac{n(k+1)^{2}}{\sqrt{r(B-A)}}\right)^{m} \max _{A \leqq x \leqq B}|s(x)|
$$

Let

$$
\begin{align*}
\|p\|_{a} & :=\sup _{0 \leqq x<x}\left|p(x) \exp \left(-x^{a}\right)\right| \quad\left(p \in \Pi_{n}, a>0\right)  \tag{2}\\
D_{2}(r) & :=\{z \in \mathbb{C}| | z-r \mid<r\}  \tag{3}\\
D_{3}(r) & :=\{z \in \mathbb{C} \mid \operatorname{Re} z>r\} \tag{4}
\end{align*}
$$

[^0]and denote by $W_{n}^{k}(r)$ and $V_{n}^{k}(r)(0 \leqq k \leqq n, r \geqq 0)$ the set of those polynomials from $\Pi_{n}$ which have at most $k$ roots in $D_{2}(r)$ and $D_{3}(r)$, respectively. The main purpose of this paper is to give Markov-type estimates for the derivatives of polynomials from $\Pi_{n}, W_{n}^{k}(r)$, and $V_{n}^{0}(r)(0 \leqq k \leqq n, r>0)$ on $[0, \infty)$ with respect to the norm $\|\cdot\|_{a}$. We shall prove the following theorems.

Theorem 1. Let $n \geqq 2, m \geqq 1$, and $a>0$. Then we have

$$
\left\|p^{(m)}\right\|_{a} \leqq c_{2}(a, m)\left(K_{n}(a)\right)^{m}\|p\|_{a} \quad\left(p \in \Pi_{n}\right)
$$

where

$$
K_{n}(a)= \begin{cases}n^{2-1 / a} & \text { if } \frac{1}{2}<a<\infty \\ \log ^{2} n & \text { if } \quad a=\frac{1}{2} \\ 1 & \text { if } \quad 0<a<\frac{1}{2}\end{cases}
$$

THEOREM 2. Let $n \geqq 2,0 \leqq k \leqq n, m \geqq 1, r \geqq 0$, and $a>0$. Then we have

$$
\left\|p^{(m)}\right\|_{a} \leqq c_{3}(a, m)\left((k+1)^{2} L_{n}(a, r)\right)^{m}\|p\|_{a} \quad\left(p \in W_{n}^{k}(r)\right)
$$

where

$$
L_{n}(a, r)= \begin{cases}n^{2-1 / a} & \left(0 \leqq r \leqq n^{1 / a-2}\right) \\ \frac{n^{1-1 /(2 a)}}{\sqrt{r}} & \left(n^{1 / a-2} \leqq r \leqq n^{1 / a}\right) \\ n^{1-1 / a} & \left(n^{1 / a} \leqq r<\infty\right)\end{cases}
$$

if $1 \leqq a<\infty$,

$$
L_{n}(a, r)= \begin{cases}n^{2-1 / a} & \left(0 \leqq r \leqq n^{1 / a-2}\right) \\ \frac{n^{1-1 /(2 a)}}{\sqrt{r}} & \left(n^{1 / a-2} \leqq r \leqq n^{2-1 / a}\right) \\ 1 & \left(n^{2-1 / a} \leqq r<\infty\right)\end{cases}
$$

if $\frac{1}{2}<a \leqq 1$,

$$
L_{n}(a, r)= \begin{cases}\log ^{2} n & \left(0 \leqq r \leqq \log ^{-2} n\right) \\ \frac{\log n}{\sqrt{r}} & \left(\log ^{-2} n \leqq r \leqq \log ^{2} n\right) \\ 1 & \left(\log ^{2} n \leqq r<\infty\right)\end{cases}
$$

if $a=\frac{1}{2}$, and

$$
L_{n}(a, r)=1 \quad \text { if } \quad 0<a<\frac{1}{2}
$$

THEOREM 3. If $k=0,1 \leqq m \leqq n$, and $0<a \neq \frac{1}{2}$, then up to the constant depending only on $a$ and $m$ Theorems 1 and 2 are sharp.

Conjecture 1. Up to the constant $c_{3}(a, m)$ Theorem 2 is sharp even in the case when $k=0,1 \leqq m \leqq n$, and $a=\frac{1}{2}$.

Theorem 4. Let $n, m \geqq 1, r \geqq 0$, and $a>0$. Then we have

$$
\left\|p^{(m)}\right\|_{a} \leqq c_{4}(a, m)\left(G_{n}(a, r)\right)^{m}\|p\|_{a} \quad\left(p \in V_{n}^{0}(r)\right)
$$

where

$$
G_{n}(a, r)= \begin{cases}r^{2 a-1}+n^{1-1: a}+1 & \left(0 \leqq r \leqq n^{1 / a}\right) \\ n^{2-1 / a} & \left(n^{1 \cdot a}<r<\infty\right)\end{cases}
$$

when $\frac{1}{2}<a<\infty$,

$$
G_{n}\left(\frac{1}{2}, r\right)= \begin{cases}\log ^{2}(r+2) & \left(0 \leqq r \leqq n^{2}\right) \\ \log ^{2}(n+1) & \left(n^{2}<r<\infty\right)\end{cases}
$$

and

$$
G_{n}(a, r)=1 \quad \text { when } \quad 0<a<\frac{1}{2}
$$

ThEOREM 5. For all $0<a \neq \frac{1}{2}$ and $1 \leqq m \leqq n$, up to the constant $c_{2}(a . m)$ Theorem 4 is sharp.

Conjecture 2. Up to the constant $c_{4}(a, m)$ Theorem 4 is sharp even for $a=\frac{1}{2}$ and $1 \leqq m \leqq n$.
(To see this it would be sufficient to prove that Theorem 1 is sharp when $a=\frac{1}{2}$.)

Proof of Theorem 1. It is sufficient to prove the theorem when $m=1$, from this the general case follows by induction on $m$. We distinguish two cases.

Case 1. $1 \leqq a<\infty$. Denote the integer part of $a$ by [a]. A close inspection of its derivative shows that

$$
F(x):=\left(1-\frac{x^{[a]}}{n^{[a] ; a}}\right)^{2 n} \exp \left(x^{a}\right)
$$

is monotonically decreasing in $\left[0, n^{1 / a}\right]$; therefore

$$
\begin{align*}
\exp \left(-x^{a}\right) \geqq & q_{n, y}(x):=\frac{\exp \left(-y^{a}\right)}{\left(1-y^{[a]} / n^{[a] / a}\right)^{2 n}} \\
& \times\left(1-\frac{x^{[a]}}{n^{[a] / a}}\right)^{2 n} \geqq 0 \quad\left(0 \leqq y \leqq x \leqq n^{1 / a}\right) . \tag{5}
\end{align*}
$$

Now let $p \in \Pi_{n}$ be arbitrary. Then $s:=p q_{n, y} \in \Pi_{(2[a]+1) n}\left(0 \leqq y \leqq n^{1 / a}\right)$, so by (1) and (5) we obtain

$$
\begin{align*}
\left|s^{\prime}(y)\right| & \leqq \frac{2(2[a]+1)^{2} n^{2}}{(1 / 2) n^{1 / a}} \max _{y \leqq x \leqq y+(1 / 2) n^{1 / a}}\left|p(x) q_{n, y}(x)\right| \\
& \leqq c_{5}(a) n^{2-1 / a} \max _{y \leqq x \leqq y+(1 / 2) n^{1 / a}}\left|p(x) \exp \left(-x^{a}\right)\right| \\
& \leqq c_{5}(a) n^{2-1 / a}\|p\|_{a} \quad\left(0 \leqq y \leqq \frac{1}{2} n^{1 / a}\right) \tag{6}
\end{align*}
$$

Further a simple calculation shows that

$$
\begin{equation*}
\left|q_{n, y}^{\prime}(y)\right| \leqq c_{6}(a) n^{1-1 / a} \exp \left(-y^{a}\right) \quad\left(0 \leqq y \leqq \frac{1}{2} n^{1 / a}\right) \tag{7}
\end{equation*}
$$

Hence and from (6)

$$
\begin{align*}
\left|p^{\prime}\left(y^{\prime}\right) \exp \left(-y^{a}\right)\right|= & \left|p^{\prime}(y) q_{n, y}(y)\right| \\
\leqq & \left|s^{\prime}(y)\right|+\left|p(y) q_{n, y}^{\prime}(y)\right| \\
\leqq & c_{5}(a) n^{2-1 / a}\|p\|_{a} \\
& +c_{6}(a) n^{1-1 / a}\left|p(y) \exp \left(-y^{a}\right)\right| \\
\leqq & c_{7}(a) n^{2-1 / a}\|p\|_{a} \quad\left(p \in \Pi_{n}, 0 \leqq y \leqq \frac{1}{2} n^{1 / a}\right) \tag{8}
\end{align*}
$$

Finally by (1) we get

$$
\begin{align*}
\left|p^{\prime}(y) \exp \left(-y^{a}\right)\right| & \leqq \exp \left(-y^{a}\right) \frac{2 n^{2}}{y} \max _{0 \leqq x \leqq y}|p(x)| \\
& \leqq 4 n^{2-1 / a} \max _{0 \leqq x \leqq y}\left|p(x) \exp \left(-x^{a}\right)\right| \\
& \leqq 4 n^{2-1 / a}\|p\|_{a} \quad\left(p \in \Pi_{n}, \frac{1}{2} n^{1 / a} \leqq y<\infty\right) \tag{9}
\end{align*}
$$

Now (8) and (9) give Theorem 1 in this case.

Case 2. $0<a \leqq 1$. We need the following Markov-type inequality,

$$
\begin{array}{r}
\sup _{|x|<\infty}\left|f^{\prime}(x) \exp \left(-|x|^{b}\right)\right| \leqq c_{8}(b) H_{n}(b) \sup _{|x|<\infty} \mid f(x) \exp \left(-|x|^{b}\right\} \\
\left(f \in \Pi_{2 n}, n \geqq 2, b>0\right) \tag{10}
\end{array}
$$

where

$$
H_{n}(b)= \begin{cases}n^{1-1: b} & \text { if } 1 \leqq b<\infty  \tag{11}\\ \log n & \text { if } b=1 \\ 1 & \text { if } \quad 0<b<1\end{cases}
$$

(See G. Freud [4] $(2 \leqq b<\infty)$, A. L. Levin and D. S. Lubinsky [5] $(1<b<2)$, and P. Nevai and V. Totik [11] $(0<b \leqq 1)$.) Now let $g \in \Pi_{n}$ be arbitrary and $f(x)=g\left(x^{2}\right) \in \Pi_{2 n}$. Using (10) and the substitutions $z=x^{2}$ and $a=b / 2$, we get

$$
\begin{align*}
\left|g^{\prime}(0)\right| & =\frac{1}{2}\left|f^{\prime \prime}(0)\right| \\
& \leqq c_{9}(b)\left(H_{n}(b)\right)^{2} \sup _{|x|<\infty}\left|f(x) \exp \left(-|x|^{b}\right)\right| \\
& \leqq c_{10}(a) K_{n}(a) \sup _{0 \leqq z<\infty}\left|g(z) \exp \left(-z^{a / 2}\right)\right| \\
& \leqq c_{10}(a) K_{n}(a)\|g\|_{a} \quad(0<a<\infty) . \tag{12}
\end{align*}
$$

Let $p \in I I_{n}$ and $y \in[0, \infty)$ be arbitrary. Consider the polynomial $g(x):=$ $p(x+y) \in \Pi_{n}$. Applying (12) to $g$ and using that $x^{a}+y^{a} \geqq(x+y)^{u}$ $(x, y \geqq 0,0 \leqq a \leqq 1)$, we obtain

$$
\begin{align*}
\left|p^{\prime}(y)\right| & =\left|g^{\prime}(0)\right| \\
& \leqq c_{10}(a) K_{n}(a)\|g\|_{a} \\
& \leqq c_{10}(a) K_{n}(a) \exp \left(y^{a}\right) \sup _{x \geqq 0}\left|p(x+y) \exp \left(-(x+y)^{a}\right)\right| \\
& \leqq c_{10}(a) K_{n}(a) \exp \left(y^{a}\right)\|p\|_{a}, \tag{13}
\end{align*}
$$

which yields Theorem 1 in this case as well.
Note 1. In case $a=1$ Theorem 2 was proved by G. Szegö [12], but his method does not work in the general case.

Before proving Theorem 2 we establish a Bernstein-type estimate on $[0, \infty)$ with respect to the norm $\|p\|_{a}$.

Lemma 1. Let $m \geqq 1, a>0, y>0$. Then

$$
\left|p^{(m)}(y) \exp \left(-y^{a}\right)\right| \leqq c_{11}(a, m)\left(H_{n}(2 a)\right)^{m} y^{-m / 2}\|p\|_{a} \quad\left(p \in \Pi_{n}\right)
$$

where $H_{n}(b)$ is defined by (11) for $b>0$.
Proof. From (10), by induction on $m$ it is straightforward that

$$
\begin{align*}
& \sup _{|x|<\infty}\left|f^{(m)}(x) \exp \left(-|x|^{b}\right)\right| \\
& \quad \leqq c_{12}(b, m)\left(H_{n}(b)\right)^{m} \sup _{|x|<\infty}\left|f(x) \exp \left(-|x|^{b}\right)\right| \quad\left(f \in \Pi_{2 n}, 0<b<\infty\right) \tag{14}
\end{align*}
$$

We prove the lemma by induction on $m$. The statement holds for $m=0$. Now suppose that it holds for all $0 \leqq \mu \leqq m-1$. Let $p \in \Pi_{n}$ be arbitrary and let $f(x):=p\left(x^{2}\right) \in \Pi_{2 n}$. It is easy to check that with suitable constants $c_{\mu, v, m}$ depending only on $\mu, \nu$, and $m$ we have

$$
\begin{equation*}
f^{(m)}(x)=2^{m} x^{m} p^{(m)}\left(x^{2}\right)+\sum_{\substack{0 \leqq v \leqq \mu \leqq m-1 \\ 2 \mu-v \leqq m}} c_{\mu, v . m} x^{v} p^{(\mu)}\left(x^{2}\right) ; \tag{15}
\end{equation*}
$$

thus with the substitution $y=x^{2}$ and $b=2 a$ we have

$$
\begin{align*}
f^{(m)}(x) \exp \left(-|x|^{b}\right)= & 2^{m} y^{m / 2} p^{(m)}(y) \exp \left(-y^{a}\right) \\
& +\sum_{\substack{0 \leq \nu \leqq \mu \leqq m-1 \\
2 \mu-v \leqq m m}} c_{\mu, v, m} y^{v / 2} p^{(\mu)}(y) \exp \left(-y^{a}\right) \tag{16}
\end{align*}
$$

Here by the induction assumption

$$
\begin{align*}
& \left|y^{v / 2} p^{(\mu)}(y) \exp \left(-y^{a}\right)\right| \\
& \quad=\left|y^{\mu / 2} p^{(\mu)} \exp \left(-y^{b}\right)\right| y^{(v-\mu) / 2} \\
& \quad \leqq c_{11}(a, \mu)\left(H_{n}(2 a)\right)^{\mu}\|p\|_{a}\left(H_{n}(2 a)\right)^{\mu-v} \\
& \quad \leqq c_{11}(a, \mu)\left(H_{n}(2 a)\right)^{m}\|p\|_{a} \\
& \quad\left(0 \leqq v \leqq \mu \leqq m-1,2 \mu-v \leqq m, y \geqq\left(H_{n}(2 a)\right)^{-2}\right) . \tag{17}
\end{align*}
$$

Using the substitutions $y=x^{2}, b=2 a$, and recalling that $f(x)=p\left(x^{2}\right) \in \Pi_{2 n}$, from (14) we get

$$
\begin{align*}
& \left|f^{(m)}(x) \exp \left(-|x|^{b}\right)\right| \\
& \quad \leqq c_{12}(b, m)\left(H_{n}(2 a)\right)^{m}\|p\|_{a} \quad(y \geqq 0) . \tag{18}
\end{align*}
$$

Now (16), (17), and (18) give the desired result when $y \geqq\left(H_{n}(2 a)\right)^{-2}$. If $0<y<\left(H_{n}(2 a)\right)^{-2}$, then by Theorem 1

$$
\begin{align*}
\left|p^{(m)}(y) \exp \left(-y^{a}\right)\right| & \leqq c_{2}(a, m)\left(K_{n}(a)\right)^{m}\|p\|_{a} \\
& \leqq c_{2}(a, m)\left(H_{n}(2 a)\right)^{m} y^{-m_{i}^{2}}\|p\|_{a} . \tag{19}
\end{align*}
$$

Thus the proof of the lemma is complete.
Proof of Theorem 2. We distinguish three cases.
Case 1. $a \geqq 1$. We shall use the notations introduced in the proof of Theorem 1. Observe that $q_{n, y}\left(0 \leqq y \leqq \frac{1}{2} n^{1 / a}\right)$ has all its zeros outside the circle $\left\{z \in \mathbb{C}\left||z|<n^{1 / a}\right\}\right.$. Hence by an observation of G. G. Lorentz $q_{n . y}$ is of the form

$$
q_{n, y}(x)=\sum_{j=0}^{n} a_{j}\left(x-n^{1: a}\right)^{j}\left(n^{1 ; a}-x\right)^{n-j} \quad \text { with all } \quad a_{j} \geqq 0,
$$

so from Theorem B of [6], by a linear transformation we get

$$
\begin{align*}
\left|q_{n, y}^{(j)}(y)\right| \leqq & c_{13}(a, j)\left(n^{1-1 / a}\right)^{j} \\
& \times \max _{y \leqq x \leqq y+1(1 / 2) n^{1 / a}}\left|q_{n, y}(x)\right| \\
= & c_{13}(a, j)\left(n^{1-1 / a}\right)^{j} \\
& \times \exp \left(-y^{a}\right) \quad\left(0 \leqq y \leqq \frac{1}{2} n^{1 ; a}, j \leqq 0\right) . \tag{20}
\end{align*}
$$

To prove Theorem 2 we proceed by induction on $m$. In case of $m=0$ the statement is obvious. Suppose that the theorem holds for $0 \leqq j \leqq m-1$. Let $0 \leqq y \leqq r, \quad n^{1 / a-2} \leqq r \leqq \frac{1}{4} n^{1 / a}$, and $p \in W_{n}^{k}(r)$. Then $s:=p q_{n, s} \in$ $S_{(2[a]+1 m}^{k}\left(y, y+\frac{1}{2} n^{1 ; a}, r / 2\right)$, so using Theorem A and (5) we have

$$
\begin{align*}
\left|s^{(m)}(y)\right| \leqq & c_{14}(a, m)\left(\frac{n^{1-1: / 2 a i}(k+1)^{2}}{\sqrt{r}}\right)^{m} \\
& \times \max _{y \leqq x \leqq y+(1 / 2) n^{1} a}\left|p(x) q_{n, y}(x)\right| \\
\leqq & c_{14}(a, m)\left((k+1)^{2} L_{n}(a, r)\right)^{m} \\
& \times \max _{y \leqq x \leqq y+\left(1_{i} 2\right) n^{1, a}}\left|p(x) \exp \left(-x^{a}\right)\right| \\
\leqq & c_{14}(a, m)\left((k+1)^{2} L_{n}(a, r)\right)^{m}\|p\|_{a} \\
& \left(0 \leqq y \leqq r, n^{1 / a-2} \leqq r \leqq \frac{1}{4} n^{1 / a}\right) \tag{21}
\end{align*}
$$

Now by (5), (20), (21), and the induction assumption we deduce

$$
\begin{align*}
\left|p^{(m)}(y) \exp \left(-y^{a}\right)\right|= & \left|p^{(m)}(y) q_{n, y}(y)\right| \\
\leqq & \left|\left(p q_{n, y}\right)^{(m)}(y)\right| \\
& +\sum_{j=1}^{m}\binom{m}{j}\left|p^{(m-j)}(y) q_{n, y}^{(j)}(y)\right| \\
\leqq & c_{14}(a, m)\left((k+1)^{2} L_{n}(a, r)\right)^{m}\|p\|_{a} \\
& +\sum_{j=1}^{m}\binom{m}{j} \exp \left(y^{a}\right) c_{3}(a, m-j) \\
& \times\left((k+1)^{2} L_{n}(a, r)\right)^{m-j}\|p\|_{a} \\
& \times c_{13}(a, j)\left(n^{1-1 / a}\right)^{j} \exp \left(-y^{a}\right) \\
\leqq & c_{15}(a, m)\left((k+1)^{2} L_{n}(a, r)\right)^{m}\|p\|_{a} \\
& \left(p \in W_{n}^{k}(r), 0 \leqq y \leqq r, n^{1 / a-2} \leqq r \leqq \frac{1}{4} n^{1 / a}\right) . \tag{22}
\end{align*}
$$

Further by Lemma 1

$$
\begin{align*}
& \left|p^{(m)}(y) \exp \left(-y^{a}\right)\right| \\
& \quad \leqq c_{16}(a, m)\left(H_{n}(2 a)\right)^{m} r^{-m / 2}\|p\|_{a} \\
& \quad=c_{16}(a, m)\left(L_{n}(a, m)\right)^{m}\|p\|_{a} \quad\left(p \in \Pi_{n}, r \leqq y<\infty\right) . \tag{23}
\end{align*}
$$

Now (22) and (23) give the theorem when $n^{1 / a-2} \leqq r \leqq \frac{1}{4} n^{1 / a}$. If $0 \leqq r \leqq n^{1 / a-2}$, then Theorem 1 gives the desired result. If $\frac{1}{4} n^{1 / a} \leqq r<\infty$, then using the relation $W_{n}^{k}(r) \subset W_{n}^{k}\left(\frac{1}{4} n^{1 / a}\right)$ and the just proved part of the theorem, we get the statement for all $r \geqq \frac{1}{4} n^{1 / \alpha}$.

Case 2. $\quad \frac{1}{2} \leqq a \leqq 1$. We need a number of lemmas.

Lemma 2. For all $n \geqq 2$ and $\frac{1}{2} \leqq a<\infty$ there exist polynomials $Q_{n, u} \in \Pi_{N}$ such that

$$
\begin{equation*}
c_{17}(a) \leqq Q_{n, a}(y) \exp \left(y^{a}\right) \leqq c_{18}(a) \quad\left(0 \leqq y \leqq n^{1 / a}\right) \tag{24}
\end{equation*}
$$

and

$$
1 \leqq N=N(n):= \begin{cases}{\left[c_{19}(a) n\right]} & \text { if } \frac{1}{2}<a<\infty  \tag{25}\\ {\left[\left(c_{19}(a) n \log n\right]\right.} & \text { if } a=\frac{1}{2}\end{cases}
$$

hold with suitable $c_{17}(a), c_{18}(a)$, and $c_{19}(a)$.

By using the substitutions $y=x^{2}$ and $b=2 a$, this is a trivial consequence of the corresponding result for the interval $(-\infty, \infty)$ and weight function $\exp \left(-|x|^{b}\right)(1 \leqq b<\infty)$; see Theorem 1.1 of [5] when $1<b<\infty$, and the proof of Theorem 3 of [11] when $b=1$.

Lemma 3. If $\frac{1}{2} \leqq a<\infty, r>0,0 \not \equiv v \in \Pi_{l}$ and $d$

$$
\begin{equation*}
|v(0)| \geqq c_{20}(a) \max _{0 \leqq x \leqq n^{1 \cdot u}}|v(x)| \tag{26}
\end{equation*}
$$

then $v$ has at most $c_{21}(a) / n^{-1 /(2 a)} \sqrt{r}$ roots (counting multiplicities) in $[0, r]$.

Using Lernma 1 of [2] and the substitution $x=\frac{1}{2} n^{1: a}(1+\cos t)$, we obtain Lemma 3 at once.

Lemma 4. If $\frac{1}{2} \leqq a<\infty, n, j \geqq 0, r>0, p \in \Pi_{n}$ has all its zeros in $[2 r, \infty)$ and $|p(0)|=\|p\|_{a}$, then

$$
\left|p^{(j)}(0)\right| \leqq c_{22}(a, j)\left(\frac{M}{\sqrt{r^{r}}}\right)^{j}\|p\|_{a}
$$

where $M=N n^{-1:(2 a)}$ and $N$ is defined by (25).
Proof. Let deg $p=l \leqq n$ and denote the roots of $p$ by $(2 r \leqq) x_{1} \leqq$ $x_{2} \leqq \cdots \leqq x_{i}(<\infty)$. Observe that $v:=p Q_{n, a} \in \Pi_{n+N}$ satisfies (26) where $Q_{n . a}$ and $N$ are defined by Lemma 2. With the notation

$$
I_{v}=\left[2 r v^{4}, 2 r(v+1)^{4}\right] \quad(v=1,2, \ldots)
$$

from Lemma 3 we deduce that $v$ and hence $p$ as well have at most $c_{21}(a)(n+N) n^{-1 /(2 a)} \sqrt{2 r}(v+1)^{2}$ roots (counting multiplicities) in $I_{v}$. Hence and from (25)

$$
\begin{aligned}
\frac{\left|p^{(j)}(0)\right|}{\|p\|_{a}} & =\frac{\left|p^{(j)}(0)\right|}{|p(0)|} \leqq\left(\sum_{\mu=1}^{1} \frac{1}{x_{\mu}}\right)^{j} \leqq\left(\sum_{v=i}^{\infty} \sum_{x_{\mu} \in I_{v}} \frac{1}{x_{\mu}}\right)^{j} \\
& \leqq\left(\sum_{v=1}^{\infty} c_{21}(a)(n+N) n^{-1:(2 a)} \sqrt{r}(v+1)^{2} \frac{1}{2 r v^{4}}\right)^{j} \\
& \leqq\left(\left(2 \sqrt{2} c_{21}(a) \sum_{v=1}^{\infty} \frac{1}{v^{2}}\right) \frac{(n+N) n^{-1 /(2 a)}}{\sqrt{r}}\right)^{j} \\
& \leqq c_{22}(a, j)\left(\frac{M}{\sqrt{r}}\right)^{j} .
\end{aligned}
$$

Lemma 5. If $\frac{1}{2} \leqq a<\infty, \quad n \geqq 1, \quad M^{-2} \leqq r \leqq M^{2} \quad(M$ is defined in Lemma 4), $p \in \Pi_{n}$ has all its zeros in $[2 r, \infty)$, and $|p(0)|=\|p\|_{a}$, then

$$
|p(0)| \leqq 2|p(x)| \quad\left(x \in\left[0, \frac{\sqrt{r}}{c_{23}(a) M}\right] \subset[0,1]\right)
$$

with a suitable $c_{23}(a)$.
Proof. Let $c_{23}(a):=\max \left[2 c_{22}(a, 1), 1\right\}$ and

$$
\begin{equation*}
y:=\frac{\sqrt{r}}{c_{23}(a) M} \tag{27}
\end{equation*}
$$

Since $M^{-2} \leqq r \leqq M^{2}$, we have

$$
\begin{equation*}
0<y \leqq \min \{r, 1\} . \tag{28}
\end{equation*}
$$

As $\left|p^{\prime}(x)\right|$ is monotonically decreasing in $(-\infty, 2 r]$, Lemma 4 implies

$$
\begin{equation*}
\left|p^{\prime}(\xi)\right| \leqq\left|p^{\prime}(0)\right| \leqq \frac{c_{22}(a, 1) M}{\sqrt{r}}\|p\|_{a} \quad(0 \leqq \xi \leqq 2 r) \tag{29}
\end{equation*}
$$

From the mean value theorem, (27), and (28) we deduce that there exists a $\xi_{1} \in(0, y)$ such that

$$
\begin{align*}
|p(0)-p(y)| & =y\left|p^{\prime}\left(\zeta_{1}\right)\right| \\
& \leqq \frac{\sqrt{r}}{c_{23}(a) M} \frac{c_{22}(a, 1) M}{\sqrt{r}}\|p\|_{a} \\
& \leqq \frac{1}{2}\|p\|_{a}=\frac{1}{2}|p(0)| ; \tag{30}
\end{align*}
$$

hence

$$
\begin{equation*}
2|p(y)| \geqq|p(0)| . \tag{31}
\end{equation*}
$$

As $|p(x)|$ is monotonically decreasing in ( $-\infty, 2 r]$, (27) and (31) give the desired result.

Lemma 6. Let $\frac{1}{2} \leqq a<\infty, n, m \geqq 1, M^{-2} \leqq n \leqq M^{2}$ ( $M$ is defined in Lemma 4), $s=p q$ where $p \in \Pi_{n}$ has all its zeros in $[2 r, \infty),|p(0)|=\|p\|_{a}$, and $q \in \Pi_{l}$. Then

$$
\begin{equation*}
\left|s^{(m)}(0)\right| \leqq c_{24}(a, m)\left(\frac{M(l+1)^{2}}{\sqrt{r}}\right)^{m}\|s\|_{a} . \tag{32}
\end{equation*}
$$

Proof. For the sake of brevity let

$$
\begin{equation*}
I=I(n, a, r):=\left[0, \frac{\sqrt{r}}{c_{23}(a) M}\right] \subset[0,1] . \tag{33}
\end{equation*}
$$

Applying Markov's inequality to $q \in \Pi_{l}$ on $I$, we get

$$
\begin{equation*}
\left|q^{(m-j)}(0)\right| \leqq\left(\frac{2 c_{23}(a) M}{\sqrt{r}} l^{2}\right)^{m-j}\left|q\left(x_{1}\right)\right| \quad(0 \leqq j \leqq m) \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{1} \in I \text { is such that }\left|q\left(x_{1}\right)\right|=\max _{x \in I}|q(x)| . \tag{35}
\end{equation*}
$$

Therefore by Lemmas 4, 5, (34), and (35) we easily obtain

$$
\begin{aligned}
\left|s^{(m)}(0)\right| & \leqq \sum_{j=0}^{m}\binom{m}{j}\left|p^{(j)}(0) q^{(m-j)}(0)\right| \\
& \leqq \sum_{j=0}^{m}\binom{m}{j} c_{22}(a, j)\left(\frac{M}{\sqrt{r}}\right)^{j}\|p\|_{a}\left(\frac{2 c_{23}(a) M l^{2}}{\sqrt{r}}\right)^{m-j}\left|q\left(x_{1}\right)\right| \\
& \leqq c_{25}(a, m)\left(\frac{M(l+1)^{2}}{\sqrt{r}}\right)^{m}\left|p\left(x_{1}\right) q\left(x_{1}\right)\right| \\
& \leqq e c_{25}(a, m)\left(\frac{M(l+1)^{2}}{\sqrt{r}}\right)^{m}\|s\|_{a} .
\end{aligned}
$$

Lemma 7. Let $\frac{1}{2} \leqq a<\infty, n, m \geqq 1, M^{-2} \leqq r \leqq M^{2}$ ( $M$ is defined in Lemma 4 ), $s=p q$ where $p \in \Pi_{n}$ has all its zeros in $[2 r, \infty)$, and $q \in \Pi_{i}$ has all its zeros in $\{z \in \mathbb{C} \mid 0 \leqq \operatorname{Re} z \leqq 2 r\}$. Then inequality (32) holds.

Proof. Because of the conditions prescribed for the roots of $p$ and $q$,

$$
\begin{equation*}
|s(x)| \text { is monotonically decreasing in }(-\infty, 0] . \tag{36}
\end{equation*}
$$

Thus there exists exactly one $y \in(-\infty, 0]$ such that

$$
\begin{equation*}
|s(y)|=\|s\|_{a} . \tag{37}
\end{equation*}
$$

Now let

$$
\tilde{s}(x):=s(x+y) .
$$

Then

$$
\begin{equation*}
\tilde{s}=\tilde{p} \tilde{q}, \tag{39}
\end{equation*}
$$

where $\tilde{p}(x)=p(x+y) \in \Pi_{n}$ and $\tilde{q}(x)=q(x+y) \in \Pi_{i}$ have all their zeros in [2r-y, $\infty$ ) and $\{z \in \mathbb{C} \mid-y \leqq \operatorname{Re} z \leqq 2 r-y\}$, respectively. From (36), (37), and (38) we easily deduce

$$
\begin{equation*}
|\tilde{s}(0)|=|s(y)|=\|s\|_{a}=\|\tilde{S}\|_{a} . \tag{40}
\end{equation*}
$$

From (39) it is clear that

$$
\begin{equation*}
|\tilde{p}(0)| \geqq|\tilde{p}(x)| \geqq\left|\tilde{p}(x) \exp \left(-x^{a}\right)\right| \quad(0 \leqq x \leqq 4 r-2 y) \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
|\tilde{q}(0)| \leqq|\tilde{q}(x)| \quad(4 r-2 y \leqq x<\infty) . \tag{42}
\end{equation*}
$$

By (39), (40), and (42) it is obvious that

$$
\begin{align*}
|\tilde{p}(0)| & =\frac{|\tilde{s}(0)|}{|\tilde{q}(0)|} \geqq \frac{\mid \tilde{s}(x) \exp \left(-x^{a}\right)}{|\tilde{q}(x)|} \\
& =\left|\tilde{p}(x) \exp \left(-x^{a}\right)\right| \quad(4 r-2 y \leqq x<\infty) \tag{43}
\end{align*}
$$

Now (41) and (43) yield

$$
\begin{equation*}
|\tilde{p}(0)|=\|\tilde{p}\|_{a} . \tag{44}
\end{equation*}
$$

Because of (39), $y \leqq 0$, and (44), Lemma 6 can be applied to $\tilde{s}=\tilde{p} \tilde{q}$; thus also using (38) and (40) we obtain

$$
\begin{align*}
\left|s^{(m)}(y)\right| & =\left|\tilde{s}^{(m)}(0)\right| \leqq c_{24}(a, m)\left(\frac{M(l+1)^{2}}{\sqrt{r}}\right)^{m}\|\tilde{s}\|_{a} \\
& =c_{24}(a, m)\left(\frac{M(l+1)^{2}}{\sqrt{r}}\right)^{m}\|s\|_{a} \quad\left(M^{-2} \leqq r \leqq M^{2}\right) . \tag{45}
\end{align*}
$$

By Gauss' Theorem $s^{(m)}(x)$ has all its zeros in $\{z \in \mathbb{C} \mid \operatorname{Re} z \geqq 0\}$; hence $y \leqq 0$ yields

$$
\begin{equation*}
\left|s^{(m)}(0)\right| \leqq\left|s^{(m)}(y)\right| \tag{46}
\end{equation*}
$$

which together with (45) gives the lemma.
Now let

$$
\begin{equation*}
\|p\|_{a, \delta}:=\sup _{\delta \leqq x<\infty}\left|p(x) \exp \left(-x^{a}\right)\right| \quad\left(p \in \Pi_{n}, a, \delta>0\right) . \tag{47}
\end{equation*}
$$

We need the following

Lemma 8. (a) For all $0 \leqq k \leqq n, m \geqq 1, r, a, \delta>0$ there exists a $0 \not \equiv s^{*}=s_{n, k, m, r . \delta}^{*} \in W_{n}^{k}(r)$ such that

$$
\begin{equation*}
\frac{\left|s^{*(m)}(0)\right|}{\left\|s^{*}\right\|_{a, \delta}}=\sup _{s \in W_{n}^{(r)}} \frac{\left|s^{(m)}(0)\right|}{\|s\|_{a, \delta}} \tag{48}
\end{equation*}
$$

(b) $s^{*}$ has at most $m$ roots (counting multiplicities) in

$$
D_{4}(r):=\{z \in \mathbb{C} \backslash \mathbb{R}| | z-r \mid>r\}
$$

The proof is rather similar to that of Lemma 5 of [2], so we omit it.
Now let $\bar{\delta}=1 / 4 n^{2}$. Then using Markov's inequality (1) on $[0,1]$ (with $m=1$ ) and the mean value theorem, we easily obtain

$$
\begin{equation*}
\|p\|_{a} \leqq 2 e\|p\|_{a, \delta} \quad\left(p \in \Pi_{n}\right) \tag{49}
\end{equation*}
$$

From now on let $s^{*}:=s_{n . k, m, r, \delta}^{*}$. Then in the same way as in [2] (see (20)-(37) there), from Lemmas 7 and 8 and (49) we can deduce that

$$
\begin{align*}
\left|s^{*(m)}(0)\right| \leqq & c_{25}(a, m)\left((k+1)^{2} L_{n}(a, r)\right)^{m} \\
& \times\left\|s^{*}\right\|_{a, \delta} \quad\left(M^{-2} \leqq r \leqq M^{2}\right) \tag{50}
\end{align*}
$$

whence because of the maximality of $s^{*}$ we get

$$
\begin{gather*}
\left|s^{(m)}(0)\right| \leqq c_{2 s}(a, m)\left((k+1)^{2} L_{n}(a, r)\right)^{m}\|s\|_{a, z} \\
\leqq c_{25}(a, m)\left((k+1)^{2} L_{n}(a, r)\right)^{m}\|s\|_{a} \\
\quad\left(s \in W_{n}^{k}(r), M^{-2} \leqq r \leqq M^{2}\right) . \tag{51}
\end{gather*}
$$

Now observe that $p \in W_{n}^{k}(r), y \in[0, r]$ imply $s(x):=p(x+y) \in W_{n}^{k}(r / 2)$; thus, applying (51) to $s$ and using that $x^{a}+y^{a} \geqq(x+y)^{a} \quad(x, y \geqq 0$, $0<a \leqq 1$ ) we obtain

$$
\begin{align*}
\left|p^{(m)}(y)\right|= & \left|s^{(m)}(0)\right| \\
\leqq & c_{26}(a, m)\left((k+1)^{2} L_{n}(a, r)\right)^{m}\|s\|_{a} \\
\leqq & c_{26}(a, m)\left((k+1)^{2} L_{n}(a, r)\right)^{m} \exp \left(y^{a}\right) \\
& \times \sup _{x \leqq 0}\left|p(x+y) \exp \left(-(x+y)^{a}\right)\right| \\
\leqq & c_{26}(a, m)\left((k+1)^{2} L_{n}(a, r)\right)^{m} \exp \left(y^{a}\right)\|p\|_{a} \\
& \quad\left(p \in W_{n}^{k}(r), 0 \leqq y \leqq r, M^{-2} \leqq r \leqq M^{2}\right) . \tag{52}
\end{align*}
$$

This together wih Lemma 1 yields the theorem, when $M^{-2} \leqq r \leqq M^{2}$. If $0<r \leqq M^{-2}$, then Theorem 1 gives the desired result. If $M^{2}<r<\infty$, then the relation $W_{n}^{k}(r) \subset W_{n}^{k}\left(M^{2}\right)$ and the just proved part of the theorem yield the statement.

Case 3. $0<a<\frac{1}{2}$. Now Theorem 1 implies Theorem 2.
Proof of Theorem 3. We shall use the following infinite-finite range inequality,

$$
\begin{equation*}
\|f\|_{a} \leqq c_{27}(a) \max _{0 \leqq y \leqq c 28(a) n^{1 ; a}}\left|f(y) \exp \left(-y^{a}\right)\right|\left(f \in \Pi_{2 n}, 0<a<\infty\right) \tag{53}
\end{equation*}
$$

with suitable $c_{27}(a), c_{28}(a) \geqq 1$. By using the substitutions $y=x^{2}$ and $b=2 a$ this is an obvious consequence of the analogous result for the interval $(-\infty, \infty)$ and weight function $\exp \left(-|x|^{b}\right)(b>0)$; see [7, Theorem A] or [10, Lemma 6.3]. To prove the sharpness of Theorem 2 when $k=0$, $1 \leqq m \leqq n$, and $0<a \neq \frac{1}{2}$, we distinguish three cases.

Case 1. $0<r \leqq(\pi / 4 m) c_{28}(a) n^{1 / a}$ if $1 \leqq a<\infty$, or $0<r \leqq(\pi / 4 m) n^{2-1 / a}$ if $\frac{1}{2}<a$. Let

$$
\begin{align*}
x_{j}= & \left(\frac{c_{28}(a)}{2} n^{1 / a}-\frac{4 m}{\pi} r\right) \cos \frac{(2 n-2 j+1) \pi}{2 n} \\
& +\frac{c_{28}(a)}{2} n^{1 / a} \quad(1 \leqq j \leqq n)  \tag{54}\\
z_{j}= & x_{j}+i r \quad(1 \leqq j \leqq n) \tag{55}
\end{align*}
$$

and

$$
\begin{equation*}
s(x)=s_{n, m, r, a}(x)=\sum_{j=1}^{n}\left(x-z_{j}\right)\left(x-\bar{z}_{j}\right) \in W_{n}^{0}(r) \tag{56}
\end{equation*}
$$

By Lemma 3 of [1] and (53) we easily deduce that

$$
\begin{align*}
|s(0)| & =\max _{0 \leqq x \leqq c_{28}(a) n^{1: a}}|s(x)| \\
& \geqq \max _{0 \leqq x \leqq c_{28}(a) n^{1: a}}\left|s(x) \exp \left(-x^{a}\right)\right| \\
& \geqq \frac{1}{c_{27}(a)}\|s\|_{a} \tag{57}
\end{align*}
$$

So using the notation $q(x)==\sum_{j=1}^{n}\left(x-x_{j}\right),(54)-(57)$, and the assumption of this case, by a simple calculation we get

$$
\begin{aligned}
\frac{\left|s^{(m)}(0)\right|}{\|s\|_{a}} & \geqq \frac{1}{c_{27}(a)} \frac{\left|s^{(m)}(0)\right|}{|s(0)|} \\
& \geqq \frac{2}{c_{27}(a)}\left(1+\frac{\pi}{4 m}\right)^{-m} \frac{1}{\sqrt{2}} \frac{\left|q^{(m)}(0)\right|}{|q(0)|} \\
& \geqq \frac{\sqrt{2}}{e c_{27}(a)}\left(\sum_{j=m}^{n} \frac{1}{1-x_{j}}\right)^{m} \\
& \geqq c_{29}(a, m)\left(L_{n}(a, r)\right)^{m} \quad(1 \leqq m \leqq n) .
\end{aligned}
$$

Case 2. $(\pi / 4 m) c_{28}(a) n^{1, a}<r<\infty, \quad a \geqq 1$. Now the polynomials $s_{n, m, r, u}=x^{n}$ show that Theorem 2 is sharp when $k=0$ and $1 \leqq m \leqq n$.

Case 3. ( $\pi / 4 m$ ) $c_{28}(a) n^{2-1 / a} \leqq r<\infty \quad$ if $\frac{1}{2}<a<1$ or $0<r<\infty$ if $0<a<\frac{1}{2}$. Now the polynomials $s_{n, m_{\text {L } . ~} a}=x$ give the desired result.

Of course the sharpness of Theorem 2 when $k=0,1 \leqq m \leqq n$, and $0<a \neq \frac{1}{2}$ implies the sharpness of Theorem 1 as well.

Note 2. Theorem 2 and the examples of Theorem 3 yield that

$$
\begin{aligned}
& c_{29}(a, r)\left(L_{n}(a, r)\right)^{m} \leqq \sup \frac{\left\|s^{(m)}\right\|_{a}}{\|s\|_{a}} \leqq c_{3}(a . m)\left(L_{n}(a, r)\right)^{m} \\
&\left(0 \leqq r<\infty, 1 \leqq m \leqq n, 0<a \neq \frac{1}{2}\right)
\end{aligned}
$$

holds not only in the case when the supremum is taken for all polynomials from $W_{n}^{0}(r)$, but for all polynomials from $\Pi_{n}$ having all their zeros in $\{z \in \mathbb{C}||\operatorname{Im} z| \geqq r\}$.

## Proof of Theorem 4. We need

Lemma 9. (a) For each $n \geqq 1, r \geqq 0, a, \delta>0$, and $0 \leqq y \leqq r$ there exists a polynomial $p^{*}=p_{n, r, a, \delta, y}^{*} \in V_{n}^{0}(r)$ such that

$$
\begin{equation*}
\frac{\left|p^{* \prime}(y)\right|}{\left\|p^{*}\right\|_{a, \delta, y}}=\sup _{p \in V_{n}^{(i, r)}} \frac{\left|p^{\prime}(y)\right|}{\|p\|_{a, \delta, y}} \tag{58}
\end{equation*}
$$

where $\|p\|_{a, \delta, y}:=\sup _{[0, \infty) ;(y-\delta, y+\delta)}\left|p(x) \exp \left(-x^{a}\right)\right|$.
(b) $p^{*}$ has all but at most one root in $[0, r] \cup\{z \in \mathbb{C} \mid \operatorname{Re} z=r\}$, and the remaining (at most one) root is in $(-\infty, 0)$.

The proof of this lemma is rather similar to that of Lemma 5 of [2], so we omit the details.

It is easy to see that for all $a>0, n \geqq 1$, and $y \geqq 0$ there exists a $0<\tilde{\delta}=\tilde{\delta}(a, n, y)<1$ such that

$$
\begin{equation*}
\|p\|_{a} \leqq 2\|p\|_{a, \delta_{,} y} \quad \text { for all } \quad p \in \Pi_{n} . \tag{59}
\end{equation*}
$$

By Lemma $9 p^{*} \in V_{n}^{0}(r)$ satisfying (58) with $\delta=\delta$ is of the form

$$
\begin{equation*}
p^{*}(x)=\left(x-x_{0}\right)^{x} \prod_{v=1}^{\beta}\left(x-x_{v}\right)\left(\sum_{j=0}^{\nu} a_{j}(x-r)^{2 j}\right), \tag{60}
\end{equation*}
$$

where

$$
\begin{align*}
& x_{0} \in(-\infty, 0), \quad \alpha=0, \quad \text { or } \quad \alpha=1,  \tag{61}\\
& x_{v} \in[0, r] \quad(1 \leqq v \leqq \beta)  \tag{62}\\
& a_{j} \geqq 0 \quad(0 \leqq j \leqq \gamma) \tag{63}
\end{align*}
$$

and

$$
\begin{equation*}
\alpha+\beta+2 \gamma \leqq n . \tag{64}
\end{equation*}
$$

Let

$$
\begin{align*}
& I_{1}=\left\{j \in \mathbb{N} \mid 0 \leqq j \leqq \gamma, \beta+2 j<2(4 r+1)^{a}\right\},  \tag{65}\\
& I_{2}=\left\{j \in \mathbb{N} \mid 0 \leqq j \leqq \gamma, \beta+2 j \geqq(4 r+1)^{a}\right\}, \tag{66}
\end{align*}
$$

and

$$
\begin{equation*}
p_{j}(x):=\left(x-x_{0}\right)^{\alpha} \prod_{v=1}^{\beta}\left(x-x_{v}\right) a_{j}(x-r)^{2 j} \quad(0 \leqq j \leqq \gamma) \tag{67}
\end{equation*}
$$

By (60), (65), (66), and (67) we have

$$
\begin{equation*}
p^{*}=f_{1}+f_{2}, \tag{68}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{1}:=\sum_{j \in I_{1}} p_{j} \quad \text { and } \quad f_{2}:=\sum_{j \in I_{2}} p_{j} . \tag{69}
\end{equation*}
$$

By (67), (61), (62), and (66) for $j \in I_{2}$ and $0 \leqq y \leqq r$ we obtain

$$
\begin{align*}
& \frac{\left|p_{j}^{\prime}(y) \exp \left(-y^{a}\right)\right|}{\left|p_{j}(4 r+1) \exp \left(-(4 r+1)^{a}\right)\right|} \\
& \quad \leqq(\alpha+\beta+2 j) 3^{1-\beta-2 j} \exp \left((4 r+1)^{a}\right) \\
& \quad \leqq 3(1+\beta+2 j) 3^{-(\beta+2 j / 2} \exp \left((4 r+1)^{a}-(\beta+2 j) / 2\right) \leqq c_{30} . \tag{70}
\end{align*}
$$

Thus from (67), (69), (70), (68), (63), (59), and $0<\delta<1$

$$
\begin{align*}
\left|f_{2}^{\prime}(y) \exp \left(-y^{a}\right)\right| & \leqq c_{30}\left|f_{2}(4 r+1) \exp \left(-(4 r+1)^{a}\right)\right| \\
& \leqq c_{30}\left|p^{*}(4 r+1) \exp \left(-(4 r+1)^{\alpha}\right)\right| \\
& \leqq c_{30}\left\|p^{*}\right\|_{a, \delta, y} \quad(0 \leqq y \leqq r) . \tag{71}
\end{align*}
$$

By (69), (65), and $0 \leqq \alpha \leqq 1, f_{1}$ is a polynomial of degree at most $l:=$ $\min \left\{\left[2(4 r+1)^{a}+1\right], n\right\}$, so using Theorem 1, (63), (68), and (59) we obtain

$$
\begin{align*}
\left|f_{1}^{\prime}(y) \exp \left(-y^{a}\right)\right| & \leqq c_{2}(a, 1) K_{l}(a, r)\left\|f_{1}\right\|_{a} \\
& \leqq c_{31}(a) G_{n}(a, r)\left\|f_{1}\right\|_{a} \\
& \leqq c_{31}(a) G_{n}(a, r)\left\|p^{*}\right\|_{a} \\
& \leqq 2 c_{31}(a) G_{n}(a, r)\left\|p^{*}\right\|_{a, \delta, y}(0<a<\infty, 0 \leqq y<\infty) . \tag{72}
\end{align*}
$$

From (68), (71), and (72) we get

$$
\begin{aligned}
& \left|p^{*^{\prime}}(y) \exp \left(-y^{a}\right)\right| \\
& \quad \leqq c_{32}(a) G_{n}(a, r)\left\|p^{*}\right\|_{a, \tilde{\tilde{c}, y}} \quad(0<a<\infty, 0 \leqq y \leqq r) ;
\end{aligned}
$$

hence the maximality of $p^{*}$ yields

$$
\begin{align*}
\left|p^{\prime}(y) \exp \left(-y^{a}\right)\right| \leqq & c_{32}(a) G_{n}(a, r)\|p\|_{a, \delta, y} \\
\leqq & c_{32}(a) G_{n}(a, r)\|p\|_{a} \\
& \quad\left(p \in V_{n}^{0}(r), 0<a<\infty, 0 \leqq y \leqq r\right) . \tag{73}
\end{align*}
$$

Now let $p \in V_{n}^{0}(r)$ and $z \in[0, \infty)$ be arbitrary. Applying (73) with $y=0$ to $\tilde{p}(x):=p(x+z) \in V_{n}^{0}(r)$ and using the inequality $(x+z)^{a} \leqq x^{a}+z^{a}(x, z \geqq 0$, $0<a \leqq 1$ ) we obtain

$$
\begin{align*}
\left|p^{\prime}(z) \exp \left(-z^{a}\right)\right|= & \left|\tilde{p}^{\prime}(0) \exp \left(-z^{a}\right)\right| \\
\leqq & c_{32}(a) G_{n}(a, r)\|\tilde{p}\|_{a} \exp \left(--z^{a}\right) \\
\leqq & c_{32}(a) G_{n}(a, r) \\
& \quad \times \sup _{0 \leqq x<\infty}\left|p(x+z) \exp \left(-(x+z)^{a}\right)\right| \\
\leqq & c_{32}(a) G_{n}(a, r)\|p\|_{a} \\
& \left(p \in V_{n}^{0}(r), 0 \leqq z<\infty, 0<a \leqq 1\right) \tag{74}
\end{align*}
$$

If $p \in V_{n}^{0}(r)$ and $r \leqq y \leqq \frac{1}{2} n^{1 / a}$, then (cf. (5)) $s:=p q_{n, y} \in \Pi_{(2[a]+1 n n}$ has all its zeros outside the circle with diameter $\left[y, n^{1, a}\right]$; thus $s$ is of the form

$$
s(x)=\sum_{v=0}^{d} b_{v}(x-y)^{v}\left(n^{1 / a}-x\right)^{d-v}
$$

with $b_{v} \geqq 0(1 \leqq v \leqq d)$ and $d=(2[a]+1) n$; thus a theorem of G. G. Lorentz (see Theorem A of [6]) and (5) yield

$$
\begin{align*}
\left|s^{\prime}(y)\right| & \leqq \frac{c_{33}(a) n}{n^{1 / a}-y} \max _{y \leqq x \leqq n^{1 / a}}|s(x)| \\
& \leqq c_{34}(a) n^{1-1 / a} \max _{y \leqq x \leqq n^{1 / a}}\left|p(x) \exp \left(-x^{a}\right)\right| \\
& \leqq c_{34}(a) n^{1-1 / a}\|p\|_{a} \quad\left(1 \leqq a<\infty, r \leqq y \leqq \frac{1}{2} n^{1 / a}\right) \tag{75}
\end{align*}
$$

Hence and from (7)

$$
\begin{align*}
& \left|p^{\prime}(y) \exp \left(-y^{a}\right)\right| \leqq\left|s^{\prime}(y)\right|+\left|p(y) q_{n, y}^{\prime}(y)\right| \\
& \leqq \\
& \quad c_{35}(a) n^{1-1 / a}\|p\|_{a}  \tag{76}\\
& \quad\left(p \in V_{n}^{0}(r), 1 \leqq a<\infty, r \leqq y \leqq \frac{1}{2} n^{1 / a}\right) .
\end{align*}
$$

By Lemma 1 we have

$$
\begin{align*}
\left|p^{\prime}(y) \exp \left(-y^{a}\right)\right| \leqq & c_{36}(a) \frac{n^{1-1 /(2 a)}}{\sqrt{y}}\|p\|_{a} \\
\leqq & c_{37}(a) n^{1-1 / a}\|p\|_{a} \\
& \quad\left(p \in \Pi_{n}, \frac{1}{2}<a<\infty, \frac{1}{2} n^{1 / a} \leqq y<\infty\right) . \tag{77}
\end{align*}
$$

Finally we have

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{a} \leqq c_{38}(a)\|p\|_{a} \quad\left(p \in \Pi_{n}, 0<a<\frac{1}{2}\right) \tag{78}
\end{equation*}
$$

(see Theorem 2 of [11] and Theorem 1). Now (73), (74), (76), (77), and (78) yield the theorem when $m=1$. From this, using Gauss' theorem, by induction on $m$ we immediately obtain the desired result for all $m \geqq 1$.

Proof of Theorem 5. Let $T_{k}(x)=\cos (k \arccos x)$ be the Chebyshev polynomial of degree $k$ and let

$$
\begin{align*}
R & :=\min \left\{r, n^{1 / a}\right\}, \quad a>\frac{1}{2},  \tag{79}\\
p_{k}(x) & :=T_{k}\left(\frac{2 x}{R}-1\right) \in V_{n}^{0}(r), \tag{80}
\end{align*}
$$

where

$$
\begin{equation*}
k:=\left[\frac{R^{a}}{c_{28}(a)^{a}}\right] \leqq n \tag{81}
\end{equation*}
$$

with $c_{28}(a) \geqq 1$ defined by (53). Then using (53), (79), (80), and (81), by a simple calculation we obtain

$$
\begin{align*}
\left\|p_{k}^{(m)}\right\|_{a} & \geqq\left|p_{k}^{(m)}(0)\right| \\
& \geqq c_{38}(m)\left(\frac{2 k^{2}}{R}\right)^{m} \max _{0 \leqq x \leqq R}\left|p_{k}(x)\right| \\
& \geqq c_{39}(a, m)\left(k^{2-1: a}\right)^{m} \max _{0 \leqq x \leqq c_{23}(a) k^{1 \cdot \alpha}}\left|p_{k}(x)\right| \\
& \geqq c_{40}(a, m)\left(1+\min \left\{r^{2 a-1}, n^{2-1, a}\right\}\right)^{m}\left\|p_{k}\right\|_{a} \\
& \quad\left(\frac{1}{2}<a<\infty, k \geqq m+1\right) . \tag{82}
\end{align*}
$$

Further, for the polynomials $P_{n}(x):=X^{n} \in V_{n}^{0}(0) \subset V_{n}^{0}(r)(r \geqq 0)$ we have

$$
\left\|P_{n}^{(m)}\right\|_{a} \geqq \begin{cases}c_{41}(a, m)\left(n^{1-1 / a}\right)^{m}\left\|P_{n}\right\|_{a} & (1 \leqq a<\infty, n \geqq m+1)  \tag{83}\\ c_{42}(a, m)\left\|P_{n}\right\|_{a} & (0<a<\infty, n=m+1)\end{cases}
$$

Now (82) and (83) give the desired result.

## References

1. R.J. Duffin and A. C. Schafffer, A refinement of an inequality of the brothers Markoff, Trans. Amer. Math. Soc. 50 (1941), 517-528.
2. T. Erdélyi, Markov type estimates for certain classes of constrained polynomials, Constructive Approximation, in press.
3. T. Erdély, Markov type estimates for the derivatives of polynomials with restricted zeros, submitted for publication.
4. G. Frevd, Markov-Bernstein inequalities in $L_{p}(-\infty, \infty)$, in "Approximation Theory YI" (G. G. Lorentz et al., Eds), pp. 369-377, Academic Press, New York, 1976.
5. A. L. Levin and D. S. Lubinsky, Canonical products and the weights exp $\left(-|x|^{x}\right), x>1$ with applications, J. Approx. Theory 49 (1987), 149-169.
6. G. G. Lorentz, The degree of approximation by polynomials with positive coefficients, Math. Ann. 151 (1963), 239-251.
7. D. S. Lubinsky, A weighted polynomial inequality. Proc. Amer. Math. Soc. 92 (1984), 263-267.
8. A. Markoff, Sur une question posee par Mendeleieff, Bull. Acad. Sci. St. Pelersburg 62 (1882), 1-24.
9. W. Markoff, Über Polynome, die in einen gegebenen Intervale möglichst wenig von Nuill abweichen, Math. Ann. 77 (1916), 231-258. [The original appeared in Russian in 1892]
10. H. N. Mhaskar and E. B. Saff, Extremal problems for polynomials with exponental weights, Trants. Amer. Math. Soc. 285 (1984), 203-234.
11. P. Nevar and V. Totik, Weighted polynomial inequalities, Constructive Approx. 2 (1986), 113-127.
12. G. Szecö, On some problems of approximation, MTA Mat. Kut. Int. Közl. 9 (1964), 3-9.

[^0]:    * Research supported by the Hungarian Foundation for Scientific Research under Grant 1801.

